
How-To Hours February 23, 2021
dbt-expectations: extending dbt test and the
anatomy of a test

Claus Herther
@calogica.com
Data & Analytics Consulting

dbt-expectations: what is it?
4 dbt package with > 50 pre-built dbt schema tests,

applicable to models or columns within models

4 Port(ish) of the Great Expectations library from
Python to SQL/Jinja

4 Uses "expectation" semantic to express an assertion

https://greatexpectations.io/

dbt-expectations: what is it?
For example:

models: # or seeds or source:
- name: my_model
 tests:
 - dbt_expectations.expect_table_row_count_to_be_between:
 min_value: 1
 max_value: 4

dbt-expectations:
what is it?
4 API is fairly close to original GE

API
(Glossary of Expectations)

4 But is "expected" (punny!) to
be extensible beyond original
API

https://docs.greatexpectations.io/en/latest/reference/glossary_of_expectations.html

dbt-expectations: but
why?

4 Expectations = Asserts = Tests

4 Testing is native to dbt

4 Most practical tests can be
expressed in SQL

4 Testing in dbt already Hts into
your development workOow

dbt-expectations: but
why?

4 Requires no Python, no
additional work8ow steps

4 Works with dbt Cloud!

4 Accomplishes 90%* of what
Python would do for you
*wild guess

dbt-expectations: why not?

Use Great Expectations when, for example:

4 You have a Python-based data-science work5ow you
need to test

4 You need to use expectations that can't be expressed
in SQL

dbt-expectations:
how's it work?
Include in packages.yml

packages:
- package: calogica/dbt_expectations
 version: [">=0.2.0", "<0.3.0"]

(for the latest version tag, check:
https://github.com/calogica/
dbt-expectations/releases/
latest)

dbt-expectations: how's it work?
Apply to models/sources/seeds or columns in <schema>.yml

models:
- name: my_model
 tests:
 - dbt_expectations.expect_table_row_count_to_equal:
 value: 4

 columns:
 - name: my_column
 tests:
 - dbt_expectations.expect_column_values_to_be_between:
 min_value: 0
 max_value: 10

dbt-expectations: how's it work?
Most expectations are simple expressions passed to
expression_is_true macro
{% macro test_expect_column_values_to_not_be_null(model, column_name, row_condition=None) %}

{% set expression = column_name ~ " is not null" %}

{{ dbt_expectations.expression_is_true(model,
 expression=expression,
 row_condition=row_condition
)
 }}
{% endmacro %}

dbt-expectations: how's it work?
A simple expression evaluator, e.g. dbt_utils.expression_is_true

{% macro test_expression_is_true(model, condition='true') %}
{% set expression = kwargs.get('expression', kwargs.get('arg')) %}
with meet_condition as (
 select * from {{ model }} where {{ condition }}
),
validation_errors as (
 select
 *
 from meet_condition
 where not({{expression}})
)
select count(*) from validation_errors
{% endmacro %}

dbt-expectations: wait, you mean I can
write my own schema tests?
Yes! And you should. Schema tests are "just" macros!

{% macro test_my_custom_validation(model,
 column_name,
 bad_value='bad value') %}
with validation_errors as (

 select
 count(*)
 from
 {{ model }}
 where {{ column_name }} = '{{ bad_value }}'

)
select count(*)
from validation_errors

{% endmacro %}

dbt-expectations: wait, you mean I can
write my own schema tests?
Or, using dbt_utils.expression_is_true
{% macro test_my_custom_validation(model, column_name, bad_value='bad value') %}

{% set expression = column_name ~ " != '" ~ bad_value ~ "'" %}

{{ dbt_utils.expression_is_true(model, expression=expression) }}

{% endmacro %}

dbt-expectations: wait, you mean I can
write my own schema tests?
models:
 - name: my_model
 columns:
 - name: my_column
 tests:
 - my_custom_validation:
 bad_value: 'super bad value'

dbt-expectations: so
like, what's a dbt
package then?
4 It's a separate project that can

contain models and/or macros

4 You import it via packages.yml

dbt-expectations:
how do I create my
own packages?
4 Create a separate project that

contains models and/or macros
you'd like to share

4 Publish on dbt hub

4 ProFt!

!

dbt-expectations:
how do I create my
own packages?
4 BUT: You need to test your

packages!

dbt-expectations:
how do I test my
package?
4 Create an integration_tests

project within your package
project

4 Privately import your package

packages:

- local: ../

dbt-expectations: how do I test my
package?
4 Write test models that use your macros and test those:

dbt-expectations: how do I test my
package?
4 Write test models and schema 1les that use your test macros

dbt-expectations:
how do I test my
package?
4 Try to test on as many

platforms as possible (the ones
you support)

4 Use dbt-utils or your own
adapter macros to make cross-
platform support easier

dbt-expectations:
how do I test my
package?
4 Make sure your tests pass

before submitting a PR and
before committing to main!

dbt-expectations: how can you
contribute?
4 File an issue

4 Submit a PR

4 Improve the docs

https://github.com/calogica/dbt-expectations/issues
https://github.com/calogica/dbt-expectations/pulls
https://github.com/calogica/dbt-expectations/blob/main/README.md

Questions?

claus@calogica.com

