
Office Hours

May 20, 2020

Claus Herther

calogica.com

How do I keep bad data
from being published in

my dashboards?

Speed &
Agility

vs.

Trust &
Adoption

Using the WAP Pattern on Google BigQuery
with dbt

→ Blue/Green Deployments
→ WAP

→ Data Warehouse SLAs
→ Layering your DAG

→ Custom Schema based on --target
→ Implementation via Airflow and dbt Cloud

Blue-Green Deployments
Via Martin Fowler:

1. Deploy new code to a copy (green) of the production
environment (blue)

2. Test our code there, and then once we're satisfied
3. Flip a switch (router in Fowler's example) to

environment with the new code 1

1 https://martinfowler.com/bliki/BlueGreenDeployment.html

WAP
Write-Audit-
Publish

Stolen Borrowed from the nice folks at Netflix 2:

1. Write to partition in audit table
2. Test audit table

3. Swap partition from audit table with prod
table

2 Scaling Data Quality at Netflix

https://www.slideshare.net/MichelleFUfford/scaling-data-quality-netflix-76917740

Data Warehouse SLAs
The worst thing that can happen with WAP is that

your data warehouse becomes (slightly) stale!
Escalators are never broken, they just become

stairs. Sorry for the convenience!
— Mitch Hedberg

Data Warehouse SLAs
Data warehouse temporarily has data from the

launch of our business through two days ago, sorry
for the convenience

— Scott Breitenother 3

3 Should Your Data Warehouse Have an SLA? (Part 2)

https://www.locallyoptimistic.com/post/data-warehouse-sla-p2/

WAP on
BigQuery

→ BigQuery doesn't have partition
swapping

→ BigQuery doesn't have zero-
copy clones

Fake It!

WAP on BigQuery (with dbt!)
Write

dbt run your DAG into an audit schema/database
Audit

dbt test your DAG in the audit schema/database
Publish

dbt run part of your DAG again into the prod
schema/database

Layer your
DAG

Layer your DAG
Break up your DAG so you can selectively publish

→ Stage >> Transform >> DW >> XA
→ Private >> Private >> Public >> Public

Layer your DAG
Stage

→ rename columns, fix data types

Transform

→ all the complicated business logic
→ heavy transforms

Layer your DAG
DW

→ model transforms as Fact or Dimension tables
→ lightweight transforms

XA = eXtended Aggregates
→ combine fact and dimension tables into denormalized reporting tables (Looker)

→ lightweight joins/aggregations

Publishing to the Audit Schema
Custom Schema based on --target

audit prod
Stage <ephemeral> <ephemeral>
Transform transform transform
DW unaudited <subject area>
XA unaudited xa

Custom Schema Macro
{% macro generate_schema_name_for_env(custom_schema_name=none) -%}
 {%- set default_schema = target.schema -%}
 {%- if custom_schema_name is not none -%}
 {%- if custom_schema_name not in ("stage", "transform") and
 "audit" in target.name -%}
 unaudited
 {%- else -%}
 {{ custom_schema_name | trim }}
 {%- endif -%}
 {%- else -%}
 {{ default_schema }}
 {%- endif -%}
{%- endmacro %}

{% macro generate_schema_name(schema_name, node) -%}
 {{ generate_schema_name_for_env(schema_name) }}
{%- endmacro %}

How do you test this locally?
Set up targets:

 dev:
 type: bigquery
 method: service-account
 keyfile: key.json
 project: my_dev_project
 dataset: dw
 timeout_seconds: 300
 priority: interactive
 threads: 16

How do you test this locally?
Set up targets:

 dev_audit:
 type: bigquery
 method: service-account
 keyfile: key.json
 project: my_dev_project
 dataset: dw
 timeout_seconds: 300
 priority: interactive
 threads: 16

How do you test this locally?
Set up targets:

 prod:
 type: bigquery
 method: service-account
 keyfile: key.json
 project: prod_project
 dataset: dw
 timeout_seconds: 300
 priority: interactive
 threads: 16

How do you test this locally?
Set up targets:

 prod_audit:
 type: bigquery
 method: service-account
 keyfile: key.json
 project: prod_project
 dataset: dw
 timeout_seconds: 300
 priority: interactive
 threads: 16

Putting it all together
dbt run --target prod_audit

dbt test --target prod_audit

dbt run --target prod --models dw+

for the paranoid:
dbt test --target prod

Airflow

(thanks @josh !)

dbt Cloud
Instead of target use var!

{% macro generate_schema_name_for_env(custom_schema_name=none) -%}
 {%- set default_schema = target.schema -%}
 {%- if custom_schema_name is not none -%}
 {%- if custom_schema_name not in ("stage", "transform") and
 ("audit" in target.name or var("audit") == true) -%}
 unaudited
 {%- else -%}
 {{ custom_schema_name | trim }}
 {%- endif -%}
 {%- else -%}
 {{ default_schema }}
 {%- endif -%}
{%- endmacro %}

{% macro generate_schema_name(schema_name, node) -%}
 {{ generate_schema_name_for_env(schema_name) }}
{%- endmacro %}

dbt Cloud

dbt Cloud

dbt Cloud

dbt Cloud

W(R)AP
→ Layer your DAG into private and public layers

→ Conditional Custom Schema macro
→ Run full DAG with audit flag
→ Test full DAG with audit flag

→ Run public layers of DAG again into prod schemas

Questions?
claus@calogica.com

